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Abstract: Predicting the relative solvent accessibility (RSA) of a protein is critical to un-
derstanding its 3D structure and biological function. RSA prediction, especially when
homology transfer cannot provide information about a protein’s structure, is a significant
step toward addressing the protein structure prediction challenge. Today, deep learning is
arguably the most powerful method for predicting RSA and other structural features of
proteins. In particular, recent breakthroughs in deep learning—driven by the integration
of natural language processing (NLP) algorithms—have significantly advanced the field
of protein research. Inspired by the remarkable success of NLP techniques, this study
leverages pre-trained language models (PLMs) to enhance RSA prediction. We present
a deep neural network architecture based on a combination of bidirectional recurrent
neural networks and convolutional layers that can analyze long-range interactions within
protein sequences and predict protein RSA using ESM-2 encoding. The final predictor,
PaleAle 6.0, predicts RSA in real values as well as two-state (exposure threshold of 25%)
and four-state (exposure thresholds of 4%, 25%, and 50%) discrete classifications. On the
2022 test set dataset, PaleAle 6.0 achieved over 82% accuracy for two-state RSA (RSA_2C)
and 59.75% accuracy for four-state RSA (RSA_4C), with a Pearson correlation coefficient
(PCC) of 77.88 for real-value RSA prediction. When evaluated on the more challenging
2024 test set, PaleAle 6.0 maintained a strong performance, achieving 79.74% accuracy in
the two-state prediction and 55.30% accuracy in the four-state prediction, with a PCC of
73.08 for real-value predictions, outperforming all previously benchmarked predictors.

Keywords: protein structure prediction; structural bioinformatics; bioinformatics; natural
language processing; computational biology; deep learning

1. Introduction
The study of protein folding and function relies critically on the relative solvent

accessibility (RSA) of amino acid residues, a property intrinsically linked to the spatial
arrangement and packing of amino acids within the protein structure [1,2]. RSA, a one-
dimensional (1D) property representing a protein’s relative exposure to a solvent, holds
immense utility in predicting three-dimensional (3D) protein structures. Accurate RSA
predictions contribute significantly to protein function analysis, hydration positioning,
and overall structural insights [3]. While experimental methods for measuring RSA exist,
they are resource-intensive and time-consuming, underscoring the necessity for efficient
computational methods in the post-genomic era to keep pace with the rapidly growing
collection of protein sequences [4].
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Despite continuous updates from the Protein Data Bank (PDB) [5] through tech-
niques like X-ray crystallography, the gap between known and unknown protein structures
remains significant due to the challenges and expenses of experimental structure resolu-
tion [3]. This demand has spurred the development of various computational RSA predic-
tors, many of which leverage machine learning to utilize protein sequence data effectively.

The prediction of RSA has evolved significantly, transitioning from traditional machine
learning approaches to state-of-the-art deep learning models. Early methods relied on
multi-class or binary classification frameworks using machine learning algorithms such as
neural network-based regression, k-nearest neighbor [6], and support vector machines [7].
These methods achieved moderate accuracy, but their reliance on handcrafted features
limited their scalability.

Existing RSA predictors are typically categorized as either discrete-valued or real-
valued. Discrete predictors, such as RaptorX [8], ACCpro5 [9], SSpro/ACCpro 6 [10],
PaleAle 5.0 [3], AcconPred [11], BMRSA [12], and IGPRED-MultiTask [13], segment RSA
into categorized states (e.g., exposed, buried) using exposure thresholds (e.g., 25% and
50%). Despite their utility, these discrete methods lack the precision required for real-value
RSA predictions, which limits their broader applicability.

Real-valued predictors, such as SPIDERS3 [14,15], SPIDER3-Single [16], NetSurfP-
2.0 [17], NetSurfP-3.0 [18], DMVFL-RSA [4], SPOT-1D [19], and SPOT-1D-LM [20], have
advanced RSA prediction by providing continuous RSA values per residue, thus addressing
the limitations of discrete-valued approaches. Absolute solvent accessibility values from
DSSP [14] are often normalized into RSA percentages, leveraging diverse calculation meth-
ods for different amino acids’ maximal exposure areas. RSA predictors further divide into
template-based and ab initio models, depending on whether structural homology informa-
tion is available. While template-based predictors often demonstrate a higher accuracy [21],
they are constrained by the availability and appropriateness of the templates [22].

Recent advances in unsupervised deep learning methods, inspired by natural language
processing [23], have provided innovative ways to extract information-rich features from
protein sequences [20]. Models such as ProtTrans [24], trained on the UR50 dataset with
transformer-based architectures like T5 and ESM-2 [25], trained on the UR90 dataset with
650 million parameters, have demonstrated substantial performance improvements.

In this study, we introduce PaleAle 6.0, a novel RSA predictor that builds upon the
foundation established by PaleAle 5.0. While PaleAle 5.0 achieved success in discrete
RSA classification, it lacked real-value RSA prediction capabilities, limiting its precision
in applications requiring continuous exposure values. PaleAle 6.0 addresses this gap,
providing flexible outputs in three formats: real values and two-state (2C) and four-state
(4C) classifications.

In addition to supporting real-value predictions, PaleAle 6.0 introduces several ad-
vancements over PaleAle 5.0, including leveraging advanced embeddings from pre-trained
language models (ESM-2) instead of evolutionary profiles and utilizing a convolutional
bidirectional recurrent neural network (CBRNN) architecture for improved sequence repre-
sentation. Furthermore, PaleAle 6.0 was trained on a larger, redundancy-reduced dataset
of approximately 55 k proteins (up to 2022), enhancing its robustness and versatility. These
updates resulted in approximately 3% improvement in performance compared to PaleAle
5.0 and established PaleAle 6.0 as a more comprehensive and accurate RSA predictor.

To develop this enhanced model, we conducted a comprehensive evaluation of deep
learning architectures, including CNNs and RNNs, and their combination. Also, we
assessed encoding methods (One-Hot, ProtTrans, and ESM-2) to optimize feature represen-
tation for protein sequences. Unlike other predictors which are limited to either continuous
real-value or discrete classifications, PaleAle 6.0 multi-format predictions offer detailed RSA
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estimations alongside practical classifications for exposure thresholds (4%, 25%, and 50%).
Additionally, by using a large, redundancy-reduced training dataset of approximately
500,000 proteins, with reductions of 80% and 30%, we optimized the model’s performance
across benchmark datasets, advancing the robustness and versatility of RSA prediction.
This marks an approximate 3% improvement in performance over its predecessor, PaleAle5.

2. Approach
This study aimed to develop an advanced approach for relative solvent accessibil-

ity (RSA) prediction, addressing key challenges in accurately predicting protein residue
exposure. Our approach involves a thorough exploration and implementation of effec-
tive methods to create a specialized RSA predictor, with a focus on dataset generation,
embedding techniques, model architecture, and training strategies.

Datasets and test sets were sourced from recent Protein Data Bank (PDB) entries. We
evaluated several embedding techniques, including one-hot encoding and protein language
model (PLM)-based embeddings, such as ESM-2 [18] and ProtTrans [17]. Simultaneously,
we explored different neural network architectures to identify the optimal combination of
network types and embedding methods that enhance RSA prediction accuracy.

A key component of this project was the deliberate exclusion of traditional multiple-
sequence alignment (MSA) techniques [26], which are often time-consuming [1]. Instead,
we leveraged PLMs, which generate dense, information-rich representations of protein
sequences and serve as an efficient alternative to traditional evolutionary information for
RSA prediction.

To capture both local and long-range dependencies in protein sequences, we employed
advanced model architectures, including RNN, CNN, and CNN-BRNN combinations [2].
These architectures were selected based on their demonstrated effectiveness in related
prediction tasks. Neural networks like RNN are particularly suitable for modelling com-
plex sequence relationships, essential for RSA prediction, especially when trained on
large datasets.

Our evaluation focused on three critical metrics for RSA prediction: Pearson correla-
tion coefficient (PCC) for real-valued RSA predictions, accuracy (ACC), and F1-score for
two- and four-state discrete RSA classes. PCC measured the precision of the continuous
RSA values predicted for each residue, while ACC assessed the classification accuracy for
residues labelled as exposed, intermediate, or buried at specified RSA thresholds. The
F1-score, which combined precision and recall, provided a balanced measure of model
performance, especially for imbalanced classes, offering deeper insights into the prediction
quality for both two- and four-state RSA classifications. These metrics provided a compre-
hensive assessment of the model’s effectiveness in predicting solvent accessibility across
exposure levels, offering deeper insights into protein structure and function.

This research aimed to create a reliable RSA predictor that tackles current challenges in
data preparation, feature extraction, model design, and performance assessment. Utilizing
cutting edge embedding methods and modern neural network frameworks, our objective
was to develop an RSA predictor with high accuracy that effectively identified the intricate
patterns associated with protein solvent accessibility.

3. Experiments
3.1. Datasets

The selection and preparation of datasets play a crucial role in machine learning tasks,
particularly in protein prediction. For this study, we constructed datasets using the Protein
Data Bank (PDB) [3], an accessible repository of protein structural data. Our initial dataset
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included 500,624 protein sequences from PDB entries released up until 16 November 2022,
clustered using [27], at sequence identity thresholds of both 30% and 80%.

Regarding solvent accessibility calculations, solvent accessibility values were com-
puted using the program in [28], based on experimentally resolved 3D structures in the
PDB. For each amino acid i, the relative solvent accessibility (RSA) was calculated using
the following formula:

RSAi =
SAi

MAXi
× 100% (1)

where SAi is the solvent accessibility of residue i (in Å2) from DSSP, and MAXi is the
maximum solvent accessibility for amino acid i (in Å2) type [29]. For the classifica-
tion, amino acids were grouped into four RSA classes—[0–3%], [4–24%], [25–49%], and
[50–∞%]—chosen to maintain balanced class distributions. For binary classification, the
ranges [0–24%] and [25–∞%] were used.

3.1.1. Training and Testing Set

We created training and test sets using clustering thresholds to increase sequence
diversity and reduce redundancy:

• PDB 30%: Clustering at a 30% sequence identity yielded 25,600 sequences, with 4/5
reserved for training and 1/5 (5120 proteins) for the 2022 test set;

• PDB 80%: Clustering at an 80% identity produced 55,500 sequences, which were used
for cross-validation training and to develop the final model.

An independent benchmark test set, the 2024 test set, was constructed from PDB
entries released between 16 November 2022 and 20 July 2024, comprising 692 proteins
clustered at a 30% sequence identity against the training set. Proteins with 10 or more
undetermined amino acids were excluded to ensure data quality. Table 1 summarizes each
dataset, including its source, purpose, and sequence count.

Table 1. RSA dataset information.

Dataset Seq Num Strategy

PDB 30% (Train) 20,535 Blast 30% identity clustering
PDB 80% (Train) 55,500 Blast 80% identity clustering
2022 Test Set 5130 Blast 30% identity clustering
2024 Test Set 692 Blast 30% identity clustering

3.1.2. Training and Evaluation Strategy

To ensure generalizability and robustness, we employed a five-fold cross-validation
approach using the clustered datasets PDB 80% and PDB 30%. The PDB 80% dataset,
consisting of 55,500 sequences clustered at an 80% identity threshold, was used as the
primary source of training sequences for each fold. Meanwhile, the PDB 30% dataset, with
25,600 sequences clustered at a 30% identity threshold, was divided into five equal parts,
each containing approximately 5120 sequences. In each fold of cross-validation, one part
of the PDB 30% dataset served as the test set. To ensure that the training set contained no
overlapping sequences with the test set, we used the MMseqs2 (13-45111+ds-2) Tool [30] to
filter the PDB 80% dataset against the selected test set from PDB 30%, creating a unique
training set for each fold. This approach allowed us to generate distinct training and test
sets in each fold, enhancing the diversity and independence of the training data.

For final model benchmarking, we used the independent 2024 test set, which pro-
vided a comprehensive evaluation of our model’s performance on new, non-redundant
protein sequences.
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3.2. Sequence Embedding

To provide our RSA prediction model with meaningful sequence representations,
we explored various embedding techniques, including one-hot encoding and protein
language model (PLM)-based embeddings. These embeddings transform protein se-
quences into structured numerical inputs that can capture crucial information for accurate
RSA prediction.

One-hot encoding is a foundational technique that represents each amino acid as
a 21-element vector, where each position in the vector indicates a unique amino acid
identity with a binary marker. This encoding preserves the distinct identity of each residue
within the sequence, providing a straightforward yet effective representation for machine
learning models.

PLM-based embeddings, such as those generated by ProtTrans and ESM-2, offer richer,
more complex representations of protein sequences. ProtTrans, trained on the UniRef50
dataset, produces 1024-dimensional embeddings, encapsulating inter-residue relationships
and capturing nuanced sequence features. ESM-2, trained on a large dataset, generates even
higher-dimensional embeddings (1280 dimensions per residue), capturing deep structural
and evolutionary information. Notably, ESM-2 supports sequences up to 1022 residues,
which is generally suitable for most protein prediction tasks.

These PLM-based embeddings allow our RSA model to leverage advanced sequence
features without relying on multiple-sequence alignment (MSA)-based evolutionary infor-
mation, which is computationally intensive. By incorporating these dense, information-rich
embeddings, our model is better positioned to recognize patterns linked to RSA, enhancing
prediction accuracy.

3.3. Model Structure

With these embedding methods in place, we explored various model architectures
optimized for RSA prediction, including recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), and convolutional bidirectional recurrent neural networks
(CBRNNs). Each architecture offers distinct advantages in processing protein sequences,
allowing the model to capture both local and sequence-wide features that are important for
RSA prediction.

Our primary model configuration is a convolutional bidirectional recurrent neural net-
work (CBRNN), which combines the strengths of CNNs and bidirectional RNNs (BRNNs)
to process both global dependencies and local patterns in protein sequences. The CBRNN
model is particularly suited for RSA prediction, as it captures both context-dependent
interactions and localized motifs associated with solvent exposure.

(1) Bidirectional Recurrent Neural Network (BRNN): The model begins with BRNN
layers that process the protein sequence in both forward and backward directions.
This bidirectional approach is essential for understanding interactions between amino
acids that may be far apart in the sequence but are close in 3D space. By capturing
these long-range dependencies, the BRNN provides the model with a comprehensive
view of the sequence context, enhancing its ability to infer the RSA accurately.

(2) Convolutional Layers: Following the BRNN layers, convolutional layers are applied
to further refine the sequence representation. CNNs are adept at recognizing local
patterns, which is particularly valuable for RSA prediction, as residue accessibility
often depends on neighboring amino acid configurations.

(3) These layers use a series of filters to extract high-level features, helping the model
learn motifs that are associated with solvent exposure and structural properties. By
combining BRNN and CNN layers, the CBRNN model effectively integrates both
the global sequence context and localized features. This hybrid architecture allows
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PaleAle 6.0 to deliver enhanced RSA predictions by accurately modelling both the
sequence-wide dependencies and structural motifs within protein sequences. The
CBRNN’s unique ability to capture complex patterns makes it a powerful tool for
RSA prediction, improving upon traditional methods by leveraging both spatial and
sequential data within protein structures.

4. Training Process and Results
The training process for PaleAle 6.0 was conducted in two main phases, each focused

on optimizing embedding methods, model architectures, and dataset configurations to
maximize the RSA prediction accuracy.

4.1. Phase 1: Embedding and Architecture

In Phase 1, we assessed various embedding techniques (one-hot, ProtTrans, and
ESM-2) and model architectures, exploring different combinations to identify the optimal
configuration for RSA prediction. Using the PDB 30% dataset, we evaluated each setup
across three RSA prediction tasks: two-class (RSA_2C), four-class (RSA_4C), and real-
valued RSA. The results, summarized in Table 2, indicate that ESM embeddings consistently
outperformed one-hot and ProtTrans embeddings across all tasks, achieving an accuracy
(ACC) of 82.32% for RSA_2C, 59.51% ACC for RSA_4C, and a Pearson correlation coefficient
(PCC) of 77.98 for real-valued RSA.

Table 2. Results of Phase 1 using the PDB 30% dataset, detailing the RSA_2C, RSA_4C, and real-valued
RSA performance for each embedding method.

Predictors One Hot ProtTrans ESM-2

RSA_2C 72.42% ACC 82.28% ACC 82.32% ACC
RSA_4C 44.93% ACC 59.29% ACC 59.51% ACC
RSA_ real value 57.50 PCC 77.63 PCC 77.98 PCC

Model Architectures

The selected model structure, convolutional bidirectional recurrent neural network
(CBRNN), was chosen for its ability to capture both sequence-wide dependencies and
local patterns, which are essential for accurate RSA prediction. The model starts with
bidirectional RNN layers, each with 40 hidden units per direction, allowing it to capture
contextual dependencies across residues in both forward and backward directions. This is
followed by a series of convolutional layers with Tanh activations, which extract localized
sequence features crucial for RSA classification. The final output layers vary depending on
the RSA format: sigmoid for two-class (binary), SoftMax for four-class (multi-class), and
sigmoid for continuous real-valued RSA prediction. This hybrid structure enables PaleAle
6.0 to deliver robust predictions across binary, multi-class, and continuous RSA formats
(Table S2).

Among the tested architectures, the CBRNN model demonstrated superior perfor-
mance compared to standalone RNNs and CNNs. Using ESM-2 embeddings, CBRNN
achieved the highest performance with an accuracy of 82.32% for RSA_2C. Given its optimal
performance, CBRNN was selected as the preferred architecture for further development
in subsequent phases. We designed a consistent network structure for all three scenarios
(RSA 2C, RSA-4C, and RSA-real), modifying only the activation function in the final layer
to suit each specific case (Figure 1).
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Figure 1. CBRNN structure for RSA prediction where N is the total number of convolutional layers,
and i is the ith convolutional layer.

4.2. Phase 2: Final Training with Optimal Configuration

Phase 2 involved implementing the optimal configuration identified in Phase 1—ESM
embeddings with the CBRNN architecture—on the larger PDB:80% dataset to develop
the final RSA predictors. Training on this extended dataset led to further performance
improvements, achieving an accuracy (ACC) of 82.48% for RSA_2C, 59.60% ACC for
RSA_4C, and a PCC of 77.88 for real-valued RSA (Table 3).
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Table 3. Results of Phase 2 on the PDB:80% dataset, with the final RSA_2C, RSA_4C, and real-valued
RSA performance for ESM-2 embeddings.

Predictors ESM

RSA_2C 82.48% ACC
RSA_4C 59.60% ACC

RSA_ real value 77.88% PCC

To ensure robustness, we conducted five-fold cross-validation on the PDB:80% dataset.
The results demonstrated consistent performance across folds, with an average accuracy of
82.56% for RSA_2C, 59.75% for RSA_4C, and an average PCC of 78.09 for real-valued RSA
(Supplementary Table S1). These validation strategies align with the principles outlined
by Greener et al., which emphasize the importance of unbiased evaluation and proper
dataset partitioning to ensure reliability and reproducibility in supervised machine learning
models [31].

The two-phase training process highlights the effectiveness of ESM embeddings and
the CBRNN architecture for RSA prediction. The Phase 1 results indicated that the ESM-2
embeddings outperformed other methods across all RSA prediction formats, while Phase 2
confirmed that the model generalized well on a larger dataset. Five-fold cross-validation
further validated the model’s stability and reliability, with consistent performance across
folds, establishing PaleAle 6.0 as a robust tool for RSA prediction across binary, multi-class,
and continuous formats.

4.2.1. Ensemble Predictors in PaleAle 6.0

To enhance the accuracy and robustness of relative solvent accessibility (RSA) pre-
dictions, PaleAle 6.0 employs an ensemble modelling approach, integrating bidirectional
recurrent neural networks (BRNNs) with convolutional neural networks (CNNs). This
ensemble consists of fifteen models derived from a five-fold cross-validation process across
the three RSA prediction tasks: binary classification (RSA_2C), four-class classification
(RSA_4C), and real-valued RSA prediction. Each fold generates three models—one for
each prediction type—resulting in a total of fifteen models. These models are trained on
protein datasets with embeddings generated through ESM-2, capturing both sequence-wide
dependencies and local structural patterns. By combining the strengths of BRNNs and
CNNs, this ensemble approach not only improves generalization and prediction accuracy
but also enhances model reliability, making PaleAle 6.0 a robust and versatile tool for RSA
prediction across binary, multi-class, and continuous formats. This comprehensive ap-
proach positions PaleAle 6.0 as an advanced solution for practical applications in structural
biology and protein modelling.

4.2.2. Performance Comparison

We evaluated PaleAle 6.0 against several prominent RSA prediction models—
NetSurfP-2.0, NetSurfP-3.0, SPOT-1D-LM, and the previous version of PaleAle (5.0)—using
a 2024 benchmark test set of 692 proteins. The performance metrics included accuracy
(ACC) and the F1 score for two- and four-class RSA predictions and the Pearson correlation
coefficient (PCC) for the real-valued RSA. Results from the 2024 test set demonstrated
PaleAle 6.0’s competitive performance, particularly for two- and four-class predictions,
with an RSA_2C accuracy of 79.74% and an RSA_4C accuracy of 55.30%. These results
significantly surpass those of PaleAle 5.0, which achieved 77.00% for RSA_2C and 51.54%
for RSA_4C. The results are detailed in Table 4.
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Table 4. Performance comparison on the 2024 test set.

Predictors RSA_2C (ACC) F1 RSA_4C (ACC) F1 RSA_Real Value (PCC)

NetSurfP-2 77.17% 0.78 68.60%
NetSurfP-3 77.35% 0.78 69.22%

SPOT-1D-LM 78.34% 0.79 70.50%
PaleAle 5.0 77.01% 0.76 51.54% 0.51 -

PaleAle 6.0 (PDB 30%) 79.54% 0.79 55.04% 0.53 72.83%
PaleAle 6.0 (PDB 80%) 79.74% 0.79 55.30% 0.54 73.08%

5. Discussion
The development and evaluation of PaleAle 6.0 underscore its effectiveness as a tool

for predicting relative solvent accessibility (RSA) in proteins. By leveraging ensemble
modelling and protein language model (PLM)-based embeddings from ESM-2, PaleAle
6.0 achieves strong performance across binary, multi-class, and continuous RSA prediction
tasks. In this section, we discuss the model’s performance insights, key strengths, and
implications and provide detailed comparisons with previous predictors, including results
from both the 2022 and 2024 test sets.

The ensemble-based approach in PaleAle 6.0, which leverages PLMs like ESM-2
rather than traditional sequence alignments, demonstrates high accuracy while bypassing
dependency on evolutionary information. The model’s performance across continuous, two-
class, and four-class RSA predictions reveals distinct strengths in each predictive format.

Regarding real-valued RSA, the model achieves robust correlations with true RSA
values, with Pearson correlation coefficients (PCCs) of 77.88 on the 2022 test set and 73.08
on the 2024 test set, outperforming NetSurfP-2.0 and NetSurfP-3.0, which obtained 68.60
and 69.22 PCC, respectively. This consistency in high PCC values highlights PaleAle 6.0’s
strong performance in real-valued RSA predictions, making it particularly well-suited for
applications requiring precise, continuous RSA distributions.

Regarding two-class RSA classification, PaleAle 6.0 achieves impressive accuracy in
binary RSA classification, with accuracy (ACC) scores of 82.56% on the 2022 test set and
79.74% on the 2024 test set. This surpasses SPOT-1D-LM’s performance (78.34%), as well
as NetSurfP-3 (77.35%) and NetSurfP-2 (77.17%). The high accuracy in two-class RSA
classification underscores PaleAle 6.0’s capability to reliably distinguish between exposed
and buried residues.

Regarding four-class RSA classification and prediction task, PaleAle 6.0 maintains a
competitive accuracy of 59.75% on the 2022 test set and 55.30% on the 2024 test set, showing
resilience despite the inherent difficulty of multi-class RSA predictions. This performance
highlights PaleAle 6.0’s robustness in capturing nuances across multiple exposure states,
which can be particularly useful for detailed structural applications.

In summary, the ensemble-based model in PaleAle 6.0, with its use of PLM-derived
embeddings and targeted training across multiple RSA formats, delivers high accuracy and
consistency across diverse RSA prediction tasks. This establishes PaleAle 6.0 as a flexible
and reliable predictor, suitable for both research and practical applications in structural
biology and protein modelling.

6. Conclusions
PaleAle 6.0 represents a significant advancement in predicting relative solvent ac-

cessibility (RSA) across binary, multi-class, and continuous formats. By integrating an
ensemble of convolutional bidirectional recurrent neural networks (CBRNNs) with protein
language model (PLM)-based embeddings, PaleAle 6.0 achieves high accuracy and robust-
ness, outperforming existing models such as NetSurfP-2.0, NetSurfP-3.0, and the previous
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version, PaleAle 5.0. The use of ESM-2 embeddings allows PaleAle 6.0 to capture complex
sequence dependencies, providing an alignment-free alternative to traditional evolutionary
information-based approaches. This advancement highlights PaleAle 6.0’s capability for
reliable and efficient RSA predictions that are well-suited for large-scale applications in
structural biology.

Our findings demonstrate PaleAle 6.0’s strong performance across all RSA prediction
formats, with notable accuracy in real-valued RSA predictions and multi-class classification
tasks. The ensemble approach further enhances stability and accuracy, reducing variance
across predictions and establishing PaleAle 6.0 as a robust tool for research and applied
fields requiring precise RSA predictions. By training specifically for four-class RSA and
leveraging diverse embeddings, PaleAle 6.0 captures nuanced distinctions across exposure
states, making it a versatile predictor in the study of protein structure and function. Beyond
accuracy, PaleAle 6.0 offers key advantages over direct structure prediction methods.
RSA predictions are computationally less intensive and provide residue-level insights
into solvent exposure, which are critical for understanding protein folding, stability, and
function. PaleAle 6.0 is publicly available on GitHub https://github.com/WafaAlanazi/
PaleAle6.git (accessed on 1 November 2024).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom15010049/s1.
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