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Abstract 

PUNCH is a freely accessible web server designed for the rapid and accurate prediction of intrinsically 
disordered regions (IDRs) in protein sequences. Built on a high-performance computational framework, 
PUNCH web server which built on PUNCH2-Light predictor, combines speed with predictive accuracy, 
offering users a streamlined interface for generating predictions from sequence input. Validated against 
the CAID2 benchmarking datasets, PUNCH web server demonstrates competitive performance in detect-
ing IDRs across diverse protein sequences. Notably, it excels in the Disorder_PDB dataset and provides 
reliable results for the Disorder_NOX dataset, addressing the challenges of predicting disordered regions 
with low sequence similarity. The server is available at https://alienlabs.ucd.ie/punch2/, with extensive 
documentation and downloadable example datasets to support researchers in structural biology and 
bioinformatics. 

mons.org/licenses/by/4.0/). 
Proteins with intrinsically disordered regions 
(IDRs) lack stable three-dimensional structures, 
yet they play crucial roles in cellular processes 
such as signaling, regulation, and molecular 
recognition.1,2 Despite their biological significance, 
predicting IDRs remains a challenging task due to 
their structural flexibility and dynamic nature. To 
address these challenges, our group recently devel-
oped two IDR prediction tools, PUNCH2 and its 
computationally efficient variant, PUNCH2-Light.3 

Unlike PUNCH2, which incorporates multiple 
sequence alignment (MSA) as part of the feature 
extraction process, PUNCH2-Light eliminates the 
need for MSA, significantly reducing computational 
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The Critical Assessment of Intrinsic Disorder 

tional performance, securing the top two ranks on

prediction (CAID)2,4 initiative provides a rigorous 
benchmarking framework for evaluating IDR predic-
tion methods. By offering standardized datasets 
and evaluation metrics, CAID enables an objective 
comparison of prediction tools, driving progress in 
the field. Our predictors were primarily evaluated 
using datasets from the second round of CAID 
(CAID2) and were also participants in the recently 
conducted third round (CAID3),5 which was held in 
conjunction with the CASP-166 conference. The 
CAID3 results, now publicly available, provide valu-
able insights into the evolving landscape of IDR pre-
dictors and highlight the increasing demand for 
methods that offer a balance between accuracy, 
computational efficiency, and usability. In CAID3, 
both PUNCH2 and PUNCH2-Light achieved excep-
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the Disorder_PDB benchmark and ranking 12th and 
13th on the Disorder_NOX dataset. These results 
establish PUNCH2 and PUNCH2-Light as valuable 
resources for studying protein structure and 
function. 
Building on these advancements, the PUNCH 

web server provides a freely accessible platform 
for IDR prediction, combining the computational 
efficiency of PUNCH2-Light with a user-friendly 
interface. Designed to accommodate users at all 
levels, the web server enables rapid and accurate 
predictions for both large-scale datasets and 
single-sequence analyses. This manuscript 
presents the design, implementation, and 
performance of the PUNCH web server and 
discusses its potential applications in IDR 
research. The PUNCH web server is freely 
accessible at https://alienlabs.ucd.ie/punch2/. 

Materials and Methods 

Overview of prediction algorithm 

PUNCH2 and PUNCH2-Light leverage a 
lightweight yet powerful convolutional neural 
network (CNN) architecture,7 specifically optimized 
for the identification of intrinsically disordered 
regions (IDRs) in protein sequences. The core 
model integrates multiple embedding techniques 
to effectively capture essential sequence features 
and biochemical properties. Initially, three primary 
embedding strategies were evaluated for their 
effectiveness in representing IDR-relevant 
sequence information: One-Hot Encoding, Multiple 
Sequence Alignment (MSA)-based embeddings, 
and Protein Language Models (PLMs). The evalua-
tion results revealed that combining One-Hot 
Encoding with ProtTrans embeddings achieved 
comparable performance to utilizing all three meth-
ods. This finding indicated that the computationally 
expensive MSA-based embeddings provided mini-
mal additional value when One-Hot and ProtTrans 
embeddings were already in use. As a result, the 
web server implementation, known as PUNCH2-
Light,3 incorporates only the One-Hot and Prot-
Trans embeddings, striking a balance between 
speed and memory efficiency. 
Among these embeddings, ProtTrans 

embeddings provide deep contextualized 
representations that enhance PUNCH2-Light’s 
ability to recognize disordered sequence patterns 
without relying on traditional MSAs. These 
embeddings are processed through a CNN 
framework featuring a “narrow but deep” 
architecture that efficiently captures IDR-
associated patterns. This structure eliminates the 
need for MSA-based inputs, significantly reducing 
computational overhead, and allows the model to 
process variable-length protein sequences 
efficiently. The purely convolutional architecture 
also supports parallelized computations, further 
enhancing processing speed. While convolutional 
2

layers excel at capturing local sequence 
dependencies, the depth of the model allows it to 
effectively detect long-range dependencies. 
Despite its depth, PUNCH2-Light remains highly 
efficient, with approximately 200,000 parameters, 
offering a favorable balance of predictive accuracy 
and minimal resource consumption. 
The PUNCH2-Light predictor is fully integrated 

into the PUNCH web server, ensuring both 
accuracy and computational efficiency for large-
scale IDR analyses in an accessible web-based 
format. For the purposes of this manuscript, the 
term “PUNCH web server” refers to the online 
platform, while “PUNCH2-Light” denotes the 
underlying prediction model. 

Data sources and benchmarking 

The training and validation datasets for PUNCH2-
Light were carefully curated from reputable 
sources, including the Protein Data Bank (PDB)8 

for structured sequences and DisProt3 for fully dis-
ordered proteins. To construct the PDB dataset, 
sequences were retrieved using the query: [Struc-
ture Determination Methodology = “experimental” 
AND (Experimental Method = “X-RAY 
DIFFRACTION” AND Polymer Entity Type = “Prot 
ein”)]. Missing residues within these sequences 
were labeled as disordered regions. After filtering 
out sequences with more than 30% similarity to 
the test set, a final dataset comprising 72,958 
sequences, referred to as “PDB_missing,” was 
compiled. These sequences represent proteins that 
are either partially disordered or fully structured. 
However, this dataset lacked fully disordered pro-
teins necessary for comprehensive model training. 
DisProt,9 recognized as a comprehensive 

resource for disordered protein data, was selec-
tively utilized to address the annotation gaps in par-
tially disordered proteins. While the disordered 
regions annotated in DisProt are highly reliable, 
unannotated regions may correspond to either dis-
ordered regions lacking experimental evidence or 
structured regions. To ensure the inclusion of fully 
annotated disordered sequences, a subset of 158 
fully disordered proteins (termed DisProt_FD) was 
extracted from DisProt. This dataset provided 
unique sequence characteristics essential for effec-
tive model training.3 

To rigorously benchmark PUNCH2-Light, 
evaluations were conducted using the CAID2 
challenge datasets,4,5 which serve as standardized 
benchmarks for IDR predictors. The evaluation 
encompasses two subsets: Disorder_NOX and 
Disorder_PDB. Disorder_NOX classifies all avail-
able disordered annotations as positive and treats 
the remaining sequence regions as negative. In 
contrast, Disorder_PDB labels disordered regions 
as positive, structured regions (as annotated by 
the PDB) as negative, and disregards regions with-
out sufficient annotation. Due to the inherent incom-

9 pleteness in DisProt annotations, Disorder_PDB
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was chosen as the primary evaluation dataset, 
offering a more reliable classification of structured 
and disordered regions. However, to account for 
potential annotation inconsistencies, including pos-
sible false-negative classifications in Disor-
der_PDB, additional evaluations were conducted 
on Disorder_NOX to provide a comprehensive per-
formance assessment across both scenarios. 
To ensure robust evaluation, the training set was 

rigorously filtered to exclude sequences sharing 
more than 30% similarity with those in both 
Disorder_PDB and Disorder_NOX. This filtering 
process allowed us to retain the full benchmarking 
datasets, which include 348 sequences for 
Disorder_PDB and 210 sequences for 
Disorder_NOX. By eliminating potential overlaps, 
this approach minimizes bias and provides an 
accurate assessment of the model’s 
generalization capability on previously unseen data. 

Performance 

PUNCH2-Light was benchmarked against the top 
10 IDR predictors (on Disorder_PDB dataset) from 
CAID2, demonstrating competitive accuracy and 
rapid processing speeds. The model excelled in 
detecting subtle IDR patterns across diverse 
protein sequences. Table 1 presents a 
comparative performance summary of PUNCH2-
Light against leading predictors on both the 
Disorder_PDB and Disorder_NOX datasets, 
emphasizing its robustness in both accuracy and 
efficiency. On the Disorder_PDB dataset, 
PUNCH2-Light achieved an AUC of 0.950, an 
APS of 0.912, and a Max F1 of 0.845, performing 
comparably to the top-performing predictor, 
SPOT-Disorder2.10 In the Disorder_NOX dataset, 
PUNCH2-Light attained an AUC of 0.779, an APS 
of 0.374, and a Max F1 of 0.516, remaining compet-
itive with the top predictors on Disorder_PDB. The 
best-performing predictor on the CAID2 Disor-
der_NOX dataset, Dispredict3,11 achieved an 
AUC of 0.838, an APS of 0.560, and a Max F1 of 
Table 1 Benchmark performance comparison of PUNCH2-L
(Disprot_NOX). 

Top Predictor AUC 

Disorder_PDB (Disorder_NOX) 

AP

Di

1 SPOT-Disorder2 0.949 (0.780) 0.9

2 AlphaFold-rsa 0.944 (0.747) 0.9

3 PredIDR-long 0.934 (0.741) 0.8

4 IDP-Funsion 0.933 (0.818) 0.8

5 SPOT-Disorder 0.931 (0.772) 0.8

6 SETH-0 0.930 (0.772) 0.8

7 AlphaFold-pLDDT 0.929 (0.695) 0.8

8 PredIDR-short 0.927 (0.737) 0.8

9 metapredict 0.923 (0.756) 0.8

10 DeepIDR-2L 0.922 (0.800) 0.8

1a Dispredict3 0.895 (0.838) 0.7

PUNCH2-light 0.950 (0.779) 0.9

3

0.548, with corresponding performance on Disor-
der_PDB of 0.895, 0.777, and 0.731, respectively, 
as shown in Table 1 (row 1a). This performance dis-
crepancy highlights the annotation differences 
between the two datasets and underscores the 
challenges posed by varying annotation standards. 
To assess the statistical significance of PUNCH2-

Light’s performance across the Disorder_PDB and 
Disorder_NOX datasets, we performed a 
bootstrap resampling analysis with 1000 iterations 
to estimate the variability of AUC, APS, and Max 
F1 scores. The results demonstrate that 
PUNCH2-Light achieves consistent performance 
within each dataset, particularly for Disorder_PDB, 
with mean AUC, APS, and Max F1 values of 0.94 
8 ± 0.003, 0.910 ± 0.009, and 0.842 ± 0.011, 
respectively. For Disorder_NOX, the 
corresponding values were 0.781 ± 0.012, 0.376 ± 
0.023, and 0.518 ± 0.022, indicating greater 
variability. A statistically significant difference was 
observed between the two datasets, with 
PUNCH2-Light showing significantly different 
performance levels, as supported by low p-values 
(~~0.001) obtained from paired t-tests and 95% 
confidence intervals. These findings suggest that 
while PUNCH2-Light delivers stable predictions 
within each dataset, its performance is influenced 
by the differing annotation standards between 
Disorder_PDB and Disorder_NOX. 
Moreover, the recently released CAID3 results5 

demonstrate that PUNCH2-Light achieved an 
AUC of 0.950 (0.830), an APS of 0.925 (0.563), 
and a Max F1 of 0.862 (0.646) on the Disorder_PDB 
(Disorder_NOX) dataset. Notably, PUNCH2-Light 
ranked as the second-best predictor on Disor-
der_PDB, surpassed only by our PUNCH2 predic-
tor, which obtained an AUC of 0.956 (0.832), an 
APS of 0.927 (0.573), and a Max F1 of 0.865 
(0.646). On the Disorder_NOX dataset, PUNCH2-
Light ranked 13th. These results highlight 
PUNCH2-Light’s ability to deliver reliable predic-
tions across diverse evaluation criteria, further
ight with the Top 10 CAID2 Predictors on Disprot_PDB 

S 

sorder_PDB (Disorder_NOX) 

Max F1 

Disorder_PDB (Disorder_NOX) 

28 (0.558) 0.860 (0.633) 

16 (0.407) 0.849 (0.525) 

70 (0.341) 0.800 (0.464) 

78 (0.475) 0.822 (0.539) 

89 (0.364) 0.824 (0.514) 

93 (0.374) 0.830 (0.516) 

81 (0.335) 0.821 (0.506) 

59 (0.340) 0.790 (0.459) 

34 (0.321) 0.819 (0.516) 

58 (0.460) 0.794 (0.513) 

77 (0.560) 0.731 (0.548) 

12 (0.374) 0.845 (0.516) 
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underscoring its potential as a robust tool for IDR 
prediction. 
The numbers from 1 to 10 represent the 

performance rankings of various predictors on the 
CAID24 challenge Disorder_PDB dataset. 1a repre-
sents the best predictor on the CAID2 challenge 
Disprot_NOX dataset. The last predictor, 
PUNCH2-Light, is our newly developed predictor. 

Server Description 

The framework of the website 

PUNCH web server is an intuitive web server 
developed to predict intrinsically disordered 
regions (IDRs) in protein sequences, designed for 
ease of use and efficiency. Targeted at both 
bioinformatics and structural biology researchers, 
it provides a straightforward, interactive 
experience for a wide range of users. 

Web pages 

The website framework includes four primary web 
pages to facilitate user interaction and access to 
PUNCH web server’s functionalities (web pages 
section, left part in Figure 1): 
Figure 1. Framework of the PUNCH Web Server. The diag
showing the primary web pages: (1) Home page for task sub
links; (2) Task Result page for viewing task details and seque
Prediction Result page displaying interactive predictions, in
page with installation instructions for local use. The right s
page interactions, Celery task management, data handling,

4

1. Home Page: This introductory page provides multiple 
ways for users to submit a query in FASTA format, 
check task status, and view basic information about 
PUNCH web server. It also includes a link to the 
Download page for users interested in local installa-
tion options. 

2. Task Result Page: This page displays task informa-
tion, including a unique task ID, and shows whether a 
submitted task is still in progress or completed. Once 
completed, the user can download the prediction 
results. The page also presents a table with the list 
of query sequences; each sequence has an individ-
ual link that leads to a detailed view of the prediction 
results for that sequence (prediction result page). 

3. Prediction Result Page: Displaying results for indi-
vidual protein sequences, this page includes a 
colour-coded visualization, with disordered amino 
acids highlighted in pink. A prediction plot provides 
a per-amino-acid breakdown of predicted values, 
and an interactive threshold slider allows users to 
adjust the threshold dynamically, with the plot and 
highlights updating in real-time. 

4. Download Page: This page contains all information for 
users who wish to install PUNCH locally, detailing instal-
lation instructions for two different methods. It links to 
the software on GitHub and Docker for easy access.
ram illustrates the website structure, with the left section 
mission, status checks, basic information, and download 
nce-specific prediction results with download options; (3) 
cluding a threshold-adjustable plot; and (4) Download 
ection outlines the back-end framework, encompassing 
 and prediction task execution. 

move_f0005


D. Meng and G. Pollastri Journal of Molecular Biology xxx (xxxx) xxx
This structured, user-friendly setup ensures that 
users can easily navigate through submissions, 
review results, and explore download options, 
making PUNCH web server accessible for users 
of various expertise levels. 

Back-end 

The PUNCH web server is built on the Django12 

framework, with Python handling back-end pro-
cesses and HTML and Javascript supporting the 
front end. Each user request is managed as a 
“Task,” handled asynchronously by integrating Cel-
ery13 to process predictions independently of the 
main application thread. This structure enables 
users to check the status of tasks later using their 
task IDs, without needing to keep the page open. 
Prediction results are stored for a week, allowing 
users ample time to retrieve their data. 
Since the PUNCH2-Light predictor does not 

require MSA results, and both One-Hot encoding 
and ProtTrans embeddings operate with minimal 
resource demands, the computational load 
remains low for each sequence batch (~50 
sequences). As tasks queue in Celery, the server 
processes one task at a time following a first-
come, first-served rule, ensuring an efficient 
workflow without resource strain. This setup 
minimizes wait times by ensuring that each 
prediction completes quickly. 
To manage data effectively, PUNCH web server 

uses a hybrid storage solution (Figure 1, right side): 

d Relational Database (PostgreSQL)14 : Stores essen-
tial metadata for each Task, such as the task ID, cre-
ation timestamp, file paths to input and output files, 
and other relevant task information. This structure 
minimizes database load by storing only critical meta-
data, improving server performance. 

d File System: Large files, including the actual 
sequence data and prediction results, are saved on 
the server’s disk. This approach avoids the need to 
store extensive data within the database itself, reduc-
ing database size and complexity while ensuring that 
users can download large results files directly from 
the file system. 

Together, this structure optimizes the website’s 
ability to handle concurrent users and sizable 
query data while keeping operational costs low. 

Implementation and server runtime 

PUNCH web server is designed with a 
lightweight, high-performance architecture that 
efficiently handles high-traffic loads. 
Asynchronous task management is handled by 
Celery, ensuring smooth processing of user 
requests and predictions even during peak usage. 
The server infrastructure operates on a Linux 
system with 24 CPU cores, 16 GB of RAM, an 
NVIDIA GeForce RTX 4080 GPU (16 GB 
5

memory), and 1 TB of storage. Using the 
Disorder_PDB dataset and applying the same 
method as the CAID2 benchmarking for runtime 
calculation—measuring the average prediction 
time for a sequence of 1,000 residues—PUNCH 
web server achieves an average runtime of 6 s 
per sequence, completing predictions for all 348 
sequences in Disorder_PDB in approximately 
1,660 s. Furthermore, when tested on the UniProt 
Reviewed Swiss-Prot15 human proteome dataset 
(20,421 sequences, totaling 13.7 MB), PUNCH 
web server generated predictions for all sequences 
in roughly 1,600 s. With support for input files up to 
40 MB, PUNCH web server is well-suited for large 
datasets and high-throughput applications. 

User guide and an example 

As illustrated in Figure 1, users can submit a 
query from the homepage by entering one or 
more protein sequences in the text area or 
uploading a FASTA file (.fasta). Both submission 
methods require the input to be in FASTA format. 
For example, submitting a file named 
p49913.fasta, containing one Uniprot sequence 
(P49913), will initiate the task. The prediction 
threshold can be adjusted, with a default value set 
at 0.35. Once a query is submitted, a task is 
created immediately, and the user is directed to 
the result page, where the task ID (e.g., 
bb880a50-6955-4d17-aafe-85b7bfaa8644) is 
displayed. Users may refresh the result page or 
save the task ID to check the task status from the 
homepage at a later time. 
Upon completion, a download link appears, 

allowing users to obtain the prediction results as 
CSV files, with each sequence saved in a 
separate file. Additionally, users can view the 
prediction results directly on the website: the 
result page lists all submitted sequences in a 
table, with links for each sequence leading to a 
detailed prediction result page. 
In the Prediction Result page (illustrated in 

Figure 2 for sequence P49913), detailed 
predictions are displayed as both colour-coded 
amino acids and a scatter plot. Disordered amino 
acids are highlighted in pink, while structured 
amino acids appear in blue. Users can adjust the 
threshold slider, and the scatter plot and amino 
acid colours will dynamically update to reflect the 
changes.
Results for each task are available to download 

and review for one week, after which task 
information is automatically deleted. 
Conclusion 

PUNCH web server offers a powerful and 
accessible platform for predicting intrinsically 
disordered regions (IDRs) in protein sequences. 
Through its efficient, high-performance
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Figure 2. Prediction Result page. This screenshot shows the prediction result of Uniprot sequence P49913.
architecture, the server allows users to generate 
accurate predictions quickly, supporting both high-
throughput analysis and detailed individual 
investigations. PUNCH2-Light, the core predictor, 
combines One-Hot encoding and ProtTrans 
embeddings in a deep convolutional neural 
network, effectively capturing IDR-related features 
without the computational cost of traditional 
alignment-based methods. Comprehensive 
benchmarking against CAID2 standards confirms 
PUNCH web server’s competitive accuracy and 
processing speed, making it a valuable resource 
for the bioinformatics community. 
The server’s user-friendly interface includes well-

structured pages for query submission, task status 
monitoring, and result visualization, with dynamic 
elements that allow users to adjust prediction 
thresholds in real time. Backed by a robust data 
management system, PUNCH web server securely 
handles large datasets and stores results 
temporarily, providing users ample time to retrieve 
and analyze their data. With freely available access, 
clear documentation, and downloadable resources, 
PUNCH stands as a versatile tool for researchers 
across bioinformatics and structural biology. The 
server’s architecture and adaptability position it as a 
sustainable solution for IDR prediction, supporting 
6

ongoing research efforts and future advancements 
in the study of protein disorders. 

Availability 

Website: https://alienlabs.ucd.ie/punch2/. 
Dataset: https://huggingface.co/datasets/ 

deeeeeeeeee/PUNCH2_data. 
GitHub: 

d Embedding: https://github.com/deemeng/embedding 
d PUNCH2-Light: https://github.com/deemeng/ 

punch2_light 

Docker: 

d Embedding: https://hub.docker.com/r/dimeng851/ 
embedding 

d PUNCH2-Light: https://hub.docker.com/r/dimeng851/ 
punch2_light 
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