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Abstract
Intrinsically disordered proteins (IDPs) and their intrinsically disordered regions (IDRs)
lack stable three-dimensional structures, posing significant challenges for computa-
tional prediction. This study introduces PUNCH2 and PUNCH2-light, advanced pre-
dictors designed to address these challenges through curated datasets, innovative fea-
ture extraction, and optimized neural architectures. By integrating experimental datasets
from PDB (PDB_missing) and fully disordered sequences from DisProt (DisProt_FD), we
enhanced model performance and robustness. Three embedding strategies—One-Hot,
MSA-based, and PLM-based embeddings—were evaluated, with ProtTrans emerging
as the most effective single embedding and combined embeddings achieving the best
results. The predictors employ a 12-layer convolutional network (CNN_L12_narrow),
offering a balance between accuracy and computational efficiency. PUNCH2 combines
One-Hot, ProtTrans, and MSA-Transformer embeddings, while PUNCH2-light provides
a faster alternative excluding MSA-based embeddings. PUNCH2 and its streamlined vari-
ant, PUNCH2-light, are competitive with other predictors on the CAID2 benchmark and
rank as the top two predictors in the CAID3 competition. These tools provide efficient,
accurate solutions to advance IDP research and understanding.

Introduction
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are char-
acterized by their lack of stable three-dimensional structures, which allows them to remain
highly flexible [4]. This flexibility enables IDPs and IDRs to play critical roles in various bio-
logical processes, including signaling, regulation, molecular recognition, and diverse cellular
functions [1,2]. However, their structural diversity presents significant challenges for both
experimental observation and computational prediction [2].

The prediction of IDRs requires distinct strategies compared to structured regions due
to their unique structural and functional properties. While structured region prediction
has been extensively studied in protein computational research [5], IDR prediction remains
a relatively new field with numerous challenges, both identified and emerging [19]. These
challenges can be categorized into three key areas from a computational perspective: (a) the
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availability of high-quality databases, (b) effective feature extraction methods and network
architectures, and (c) robust strategies for predictor evaluation [3].

Lack of a comprehensive IDR database. Several databases provide annotations for intrin-
sically disordered regions (IDRs). General annotation databases include DisProt [11], a com-
munity resource that curates high-quality IDR annotations based on literature, and MobiDB
[13], which aggregates annotations from both experimental literature and computational pre-
dictors. Additionally, function-specific databases such as DIBS [15], MFIB [16], and PED [17]
focus on IDRs related to specific biological functions or structural ensembles.

While MobiDB and DisProt are valuable resources for IDR analysis, their direct use in
training IDR predictors is often limited. This limitation stems from inconsistencies in annota-
tion quality across protein sequences. DisProt provides high-quality, literature-sourced anno-
tations, but not all residues in a given sequence are annotated. On the other hand, MobiDB
offers annotations for complete protein sequences, but the quality varies, combining exper-
imental data with computational predictions. However, these databases are commonly used
for evaluating predictors. For instance, the CAID challenges [19–22] utilized datasets where
IDRs were defined based on DisProt annotations, while structured regions were derived from
PDB data, explicitly excluding regions lacking experimental validation.

IDR features extraction and network architecture design. Protein sequences, com-
posed of amino acids, must be converted into numerical representations or matrices for
computational analysis. Theoretically, a protein sequence determines its structure, which
in turn determines its function [11,13]. Protein sequence embedding techniques transform
these sequences into fixed-dimensional matrices that encode key features. These features can
include amino acid composition, sequence entropy, hydrophobicity, secondary structure pre-
dictions, disorder predictions, solvent accessibility, physicochemical properties, and evolu-
tionary information. However, predictors may introduce biases, and experimental data are
often unavailable. Consequently, biochemical features [41,42] and evolutionary informa-
tion [43,44,46,49] are the most commonly used. Biochemical features are static, interpretable,
and easily accessible, while evolutionary information, typically obtained through multiple
sequence alignment (MSA) [24], is vital for understanding protein functions.

Despite its utility, MSA-based embeddings present significant challenges, particularly
in IDR sequence embedding. MSA results generate a list of sequences similar to the query
sequence, requiring additional analysis and complex model structures to capture hidden
information and long-distance dependencies [43,46]. Common approaches involve com-
bining MSA results with one-hot encoding or frequency-based representations, paired with
machine learning methods like support vector machines (SVM) [36,44] or deep learning
models like long short-term memory (LSTM) [43,45,46]. Hybrid architectures, such as con-
volutional neural networks (CNNs) [35] integrated with recurrent networks, such as cascaded
Bidirectional Recurrent Neural Networks and Convolutional Neural Networks (CBRCNN)
[47], have also been explored. However, MSA-based embeddings depend heavily on the avail-
ability of similar sequences, and their quality deteriorates when no comparable sequences
exist—common in highly disordered proteins due to their lower conservation relative to
structured regions [6]. Moreover, MSA embeddings are computationally intensive, time-
consuming, and limited in capturing diverse, context-aware information, making them less
suitable for IDR prediction tasks.

The emergence of large language models (LLMs), particularly Transformer architectures
[48], has introduced an alternative in the form of Protein Language Models (PLMs) [27,28].
PLMs can capture complex patterns, such as sequential and contextual relationships, within
extensive protein sequence datasets. They claim to encode biochemical, structural, and evolu-
tionary features [28,29,31], learning directly from raw protein sequences or MSA results [30].
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PLMs produce embeddings in a matrix format that is easier to interpret and generally faster
and more informative than MSA embeddings. However, while PLMs offer significant poten-
tial, there is no conclusive evidence that they consistently outperform MSA-based methods in
IDR prediction, nor has an optimal embedding approach for IDR prediction been established.

Evaluation of IDR predictors. Evaluating intrinsically disordered region (IDR) predictors
presents several challenges. A significant issue is the potential bias in available datasets, which
often emphasize well-studied proteins and organisms, limiting their ability to represent the
full diversity of protein sequences and structures. Additionally, the dynamic nature of IDRs
complicates evaluation, as these regions can exhibit context-dependent behavior—appearing
ordered when interacting with partner proteins but disordered in isolation [7]. This variability
makes consistent assessment of predictive accuracy difficult.

Another challenge lies in selecting appropriate performance metrics. Commonly used met-
rics such as accuracy, precision, recall, and F1 score are often insufficient for evaluating IDR
predictors, as they may fail to account for the imbalanced nature of datasets, where disor-
dered regions are typically less frequent than ordered regions [13,19]. These factors highlight
the need for more tailored evaluation strategies to capture the complexities of IDR prediction
effectively.

Contributions of this work. In this study, we aim to address these challenges by:

• Developing a systematic approach to IDR prediction, integrating diverse datasets, embed-
ding methods, and network architectures.

• Evaluating the utility of PLM-based embeddings compared to traditional MSA-based meth-
ods in capturing IDR-specific features.

• Introducing robust predictors, PUNCH2 and PUNCH2-light, trained on curated datasets
and evaluated on benchmark datasets from CAID challenges.

Through this work, we aim to provide both practical tools for IDR prediction and a com-
prehensive framework for building and evaluating IDR predictors, advancing the field toward
more accurate and interpretable models.

Proposed solution
Predicting intrinsically disordered regions (IDRs) requires tailored solutions due to their
unique characteristics, such as their structural instability and context-dependent behavior.
Existing predictors often adopt methods developed for structured protein regions, overlook-
ing IDR-specific features. To address this, we propose a comprehensive framework that inte-
grates curated datasets, advanced embedding techniques, neural architectures, and robust
evaluation strategies.

To overcome the lack of a fully annotated IDR dataset, we curated a training set by com-
bining experimentally derived sequences from PDB_missing with fully disordered sequences
from DisProt (DisProt_FD). Benchmarking datasets were sourced from the Critical Assess-
ment of Intrinsic Disorder (CAID) initiative, ensuring consistent and fair evaluation. The
CAID2 dataset was selected as the primary benchmark due to its high-quality annotations
derived from DisProt and PDB, while CAID1 and CAID3 datasets were incorporated to assess
generalizability and historical context.

Embedding methods play a crucial role in capturing IDR-specific features. Two approaches
were explored: (1) MSA-based embeddings, which leverage evolutionary information but
require computationally intensive processing and are less effective for highly disordered
sequences; and (2) PLM-based embeddings, which extract rich contextual features directly
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from protein sequences using Transformer-based architectures. PLM-based embeddings, such
as ProtTrans and ESM-2, were evaluated for their ability to provide diverse and comprehen-
sive feature representations.

For model architectures, neural networks were prioritized over traditional machine learn-
ing methods. Convolutional Neural Networks (CNNs) [35] were selected for their efficiency
and ability to model local sequence patterns effectively. Various configurations were tested
to optimize performance, including shallow and deep networks, as well as hybrid models
combining CNNs with RNNs. The choice of architecture was guided by the need to balance
computational efficiency with the ability to model complex sequence relationships.

Evaluation metrics were chosen to address the challenges of IDR prediction, particularly
the imbalance between disordered and structured regions in datasets. Metrics such as AUC-
ROC, APS, F1, MCC, and AUC-PR were utilized to provide a comprehensive assessment of
predictor performance. These metrics were selected for their ability to capture performance
across thresholds and provide insights into both precision and recall, ensuring a balanced
evaluation of IDR predictors.

This proposed framework aims to address the limitations of existing methods by incor-
porating diverse datasets, leveraging state-of-the-art embeddings, and optimizing neural
architectures. By aligning with CAID evaluation standards, this approach provides a robust
foundation for developing IDR-specific predictors.

Experiments
This study aims to develop robust predictors for IDRs by systematically exploring and inte-
grating various datasets, embedding methods, and model architectures. The experiments were
carefully designed to progress from foundational model selection to comprehensive evalu-
ation on benchmarking datasets, ultimately leading to the development of two predictors,
PUNCH2 and PUNCH2-light. This section outlines the dataset preparation, embedding
methods, and network architectures employed in this study.

Dataset preparation
To train and evaluate our predictors, we curated multiple datasets categorized as training,
validation, and benchmarking sets (Table 1 and Fig 1). The training datasets include the Pri-
mary Training Set (PDB_missing: clstr30), Extended Training Sets (PDB_missing: clstr80 and
PDB_missing: clstr100), and the Fully Disordered Supplementary Set (DisProt_FD). Bench-
marking sets consist of the Primary Benchmarking Dataset (Disorder_PDB, CAID2), the
Independent Benchmarking Dataset (Disorder_PDB_3, CAID3), and the Legacy Benchmark-
ing Dataset (Disorder_PDB_1, CAID1).

Benchmarking datasets. The Primary Benchmarking Dataset (Disorder_PDB) was
sourced from CAID2 [20]. This dataset consists of 348 sequences with conservative
annotations: disordered residues are positive, observed residues from PDB are negative, and
unannotated residues are excluded to avoid ambiguity. The Independent Benchmarking
Dataset (Disorder_PDB_3) from CAID3 comprises 232 sequences, enabling comparisons with
the latest predictors. Additionally, the Legacy Benchmarking Dataset (Disorder_PDB_1) from
CAID1 includes 652 sequences, providing historical context. As other predictors’ results on
CAID1 were obtained from the 2021 CAID1 benchmark, these results may not reflect updates
to those predictors.

Training sets. The training datasets were derived from PDB entries available as of July 26,
2023, using the query:
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Table 1. IDR dataset information.
Category Dataset Source Usage Num_Seq:Total Num_Seq:Used Description
Primary Training Set PDB_missing:

clstr30
PDB Training &

Validation
23,581 22,626 Generated with MMseq2 at 30% identity clustering.

Missing residues from X-ray diffraction are annotated
as disordered.

Fully Disordered
Supplementary Set

DisProt_FD DisProt Training 181 158 Fully disordered proteins annotated in DisProt. Supple-
mentary set to improve training representation of fully
disordered regions.

Extended Training Sets PDB_missing:
clstr80

PDB Training 44,072 41,876 Generated with MMseq2 at 80% identity clustering.
Includes additional similar sequences to enrich training
diversity.

PDB_missing:
clstr100

PDB Training 78,968 72,958 Generated with MMseq2 at 100% identity clustering.
Includes the largest number of sequences with only
identical sequences removed.

Primary Bench-
marking
Dataset

Disorder_PDB CAID2 Benchmarking 348 348 Evaluation dataset from CAID Round 2. Disordered
residues are positives, observed residues are negatives,
and unannotated regions are excluded.

Independent
Benchmarking Dataset

Disorder_PDB_3 CAID3 Benchmarking 232 232 Recent benchmarking dataset from CAID Round 3.
Used to evaluate model performance against the latest
predictors.

Legacy Benchmarking
Dataset

Disorder_PDB_1 CAID1 Benchmarking 652 652 Historical benchmarking dataset from CAID Round
1. Used to demonstrate consistency with older
benchmarks.

Note: clstr30, clstr80, clstr100 represent sequence identity 0.3, 0.8, and 1.0 after MMseq2 clustering.

https://doi.org/10.1371/journal.pone.0319208.t001

Fig 1. IDR data collection process. In the end, the IDR_Training dataset was searched against the Primary Benchmarking dataset (Disorder_PDB) by MMseqs2 with
identity=0.3, and exclude the redundant sequences from the IDR_Training.

https://doi.org/10.1371/journal.pone.0319208.g001
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Structure Determination Methodology = “experimental” AND (Experimental Method
= “X-RAY DIFFRACTION” AND Polymer Entity Type = “Protein”).

This query yielded 231,624 entities. To ensure diverse and representative training data,
100% sequence identity clustering was performed, resulting in 78,968 unique sequences.
These sequences were further clustered using MMseqs2 [23], producing datasets with varying
sequence identity thresholds, PDB_missing: clstr100 contains 78,968 sequences, PDB_missing:
clstr80 kept 44,072 representative sequences at 80% identity, and PDB_missing: clstr30 kept
23,581 representative sequences at 30% identity.

Missing residues in X-ray diffraction data were labeled as disordered, with no length
restrictions. These datasets allow us to explore the impact of dataset size and redundancy on
training performance, balancing evolutionary diversity (clstr30) and data richness (clstr100).

To address limitations in fully disordered sequences within the PDB_missing datasets, we
curated the DisProt_FD dataset from DisProt [11], containing 181 sequences annotated as
fully disordered. Comparative analysis (Fig 2) shows that DisProt_FD has a higher proportion
of long IDRs compared to PDB_missing, complementing the training data.

To ensure test set independence, sequences in the training datasets with more than 30%
identity to those in Disorder_PDB were excluded. This filtering yielded final training datasets
combining PDB_missing clusters and DisProt_FD, while reserving Disorder_PDB exclusively
for testing.

Sequence embedding
This study employs eight embedding methods derived from three categories: One-Hot Encod-
ing, MSA-Based Embedding, and PLM-Based Embedding. Detailed descriptions are provided
in Table 2.

One-hot encoding: Each amino acid is represented as a sparse binary vector (1 × 21), with
dimensions for 20 standard amino acids and one additional dimension for unusual residues.
Despite its simplicity, it effectively retains sequence identity and is widely used in combina-
tion with other methods.

MSA-based embedding: Leveraging conserved regions across related proteins, MSA-based
embeddings capture evolutionary signals. We used HHblits [26] to search the UniRef30 [18]
database, generating probabilistic embeddings (MSA-prob) based on amino acid frequencies.
Variants includeMSA-probAA (exact residue probabilities set to 1) andMSA-prob-numTemp
(template counts).

PLM-based embedding: Pre-trained models (ProtTrans [29], ESM-2 [31],MSA-
Transformer [30]) extract high-dimensional features from sequences. ProtTrans and ESM-2
operate on raw sequences, whileMSA-Transformer directly processes MSA results, embed-
ding amino acids into 768-dimensional vectors.

Network architecture
The network architecture is critical for effectively capturing the features encoded by different
embeddings, which range from local sequence patterns to long-range dependencies.

PrepBase serves as a non-learning baseline, predicting IDRs based solely on amino acid
frequencies derived from PDB_missing: clstr30. This dataset includes 3,972,049 residues, 10%
of which are in IDRs. Using observed amino acid distributions (S1 Table), PrepBasemaps
each residue to its frequency without requiring training.

StrucBase, a baseline neural network, employs a single-layer CNN with a kernel size of 1,
number of channels of 1, and sigmoid activation, processing residues independently without
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Fig 2. Dataset representation. IDRs from PDB_missing: clstr30 serve as representative subsets for training, while DisProt_FD supplements with fully disordered
sequences.

https://doi.org/10.1371/journal.pone.0319208.g002

Table 2. Information for the 8 Embedding methods.
Name Input MAX-

length
PLM Embedding

Dim
Description

One-Hot Raw sequence – – 21 feature: 20(common AA) + 1(unusual)
MSA-prob MSA result – – 22 feature: 20(common AA) + 1(unusual) + 1(Gap)
MSA-probAA MSA result – – 22 feature: 20(common AA) + 1(unusual) + 1(Gap),

set the AA probability in the sequence to 1
MSA-prob-
numTemp

MSA result – – 23 feature:MSA-prob + 1 (number of templates from
similarity searching)

MSA-
probAA-
numTemp

MSA result – – 23 feature:MSA-probAA + 1 (number of templates
from similarity searching)

ESM-2 Raw sequence 1024 esm2-t33-650M-UR50D 1280 PLM trained on UR90, includes 650M params.
MSA
Transformer

MSA result 1024 esm-msa1b-t12-100M-
UR50S

768 PLM trained on UR50 + MSA, includes 100M
params

ProtTrans Raw sequence – ProtT5-XL-UniRef50 1024 PLM trained on UR50, includes 3B params
Note: The ESM-2 andMSA Transformer models have a sequence length limitation of 1024 tokens, including the start and end tokens (i.e., 1022
sequence tokens plus a start token and an end token).

https://doi.org/10.1371/journal.pone.0319208.t002
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considering sequence context. This architecture efficiently handles variable-length inputs and
provides a simple yet effective comparison point for more advanced models.

Advanced architectures, including recurrent neural networks (RNNs) [32], LSTMs, and
CNNs, were evaluated for their ability to capture sequential and local features. CNNs, in par-
ticular, demonstrated versatility in adapting to different embedding methods, as shown in
Fig 3.

To further improve performance, a modified CBRCNN architecture was implemented
(Fig 4). CBRCNN combines CNN’s local feature extraction with RNN’s sequential mod-
eling in a two-stage process: Stage 1 generates initial predictions, and Stage 2 refines these
predictions using feedback from Stage 1. Both stages can be trained independently, offering
flexibility and improved prediction accuracy.

These architectures were systematically evaluated to identify the most effective configura-
tions for IDR prediction.

Evaluation metrics
To assess the performance of our predictors, we utilized the following evaluation metrics:

AUC-ROC: Area Under the Receiver Operating Characteristic Curve, which evaluates the
model’s ability to distinguish between classes across all thresholds.

Fig 3. The structure of general CNN-based predictors. N is the total number of Convolutional layers, and i is the ith
Convolutional layer.

https://doi.org/10.1371/journal.pone.0319208.g003
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Fig 4. 2-stage CBRCNN structure for IDR prediction.The 2 stages can be trained and evaluated separately.

https://doi.org/10.1371/journal.pone.0319208.g004

AUC-PR: Area Under the Precision-Recall Curve, which focuses on the model’s perfor-
mance in identifying the positive (disordered) class.

APS: Average Precision Score, a weighted mean of precision across recall levels, particu-
larly useful for imbalanced datasets.

F1 Score: The harmonic mean of precision and recall, optimized for a specific threshold.
MCC: Matthews Correlation Coefficient, which provides a balanced measure of model

quality, accounting for true positives, true negatives, false positives, and false negatives.
The formulas for these metrics are as follows:

AUC-ROC Score ∶ AUC-ROC =∫
1

0
TPR(FPR–1(t))dt

AUC-PR Score ∶ AUC-PR =∫
1

0
Precision(Recall–1(t))dt
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APS Score ∶ APS =
∑N

k=1(Precisionk ⋅ (Recallk – Recallk–1))
N

F1 Score ∶ F1 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

MCC ∶ MCC = TP ⋅ TN – FP ⋅ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Confidence score
To enhance the interpretability of predictions, we introduced residue-level confidence scores.
These scores reflect the reliability of predictions by integrating local sequence context through
a smoothing operation. The confidence score Ci for residue i is calculated as:

Ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
w

i+ w–1
2

∑
j=i– w–12

sj–t

1–t , if 1
w

i+ w–1
2

∑
j=i– w–1

2

sj > t,

t– 1
w

i+ w–1
2

∑
j=i– w–12

sj

t , if 1
w

i+ w–1
2

∑
j=i– w–1

2

sj ≤ t,

where:

• sj: Predicted disorder score for residue j,
• t: Threshold for disordered regions (t = 0.35),
• w: Sliding window size (odd, w = 3 by default).

Confidence values range from 0 to 1, with higher values indicating greater certainty in the
prediction. Predictions near the threshold (t) exhibit lower confidence, while those near the
extremes (s≈ 0 or s≈ 1) have higher confidence. These scores are independent of ground
truth labels and serve as a measure of the model’s certainty, providing users with additional
information for assessing predictions.

Training process and results
The training process was structured into two phases to develop robust predictors for intrin-
sically disordered regions (IDRs). Phase 1 focused on identifying the best combinations
of embedding methods and network architectures, referred to as “best singles”. Phase 2

involved incremental improvements and the creation of ensemble predictors. The outcomes
of Phase 1 include several optimal model solutions (single predictors), while Phase 2

yielded the final predictors, PUNCH2 and PUNCH2-light. These predictors were trained on
larger datasets and benchmarked on CAID2, CAID3, and CAID1 datasets for validation.

Phase 1: Selecting the best model solutions
In Phase 1, the Primary Training Set (PDB_missing: clstr30) was divided into 70% for training
and 30% for validation. The objective was to evaluate the performance of different embedding
methods and network architectures using AUC-ROC as the primary evaluation metric.
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Performance of embedding methods with baselines. The baseline model StrucBase was
trained using eight embedding methods: One-Hot, MSA-prob, MSA-probAA, MSA-prob-
numTemp, MSA-probAA-numTemp, ProtTrans, ESM-2, and MSA Transformer. The results
are summarized in Table 3.

PLM-based embeddings, particularly ProtTrans andMSA Transformer, consistently out-
performed others.MSA Transformer excelled for sequences shorter than 1022 residues but
required segmentation for longer sequences, resulting in suboptimal performance. ProtTrans
outperformed ESM-2, while One-Hot encoding showed reasonable performance given its
simplicity and computational efficiency. Among MSA-based methods, adding template-based
features marginally improved results. Overall, PLM-based embeddings proved most effective
for IDR prediction.

Network architectures. CNN architectures: shallow vs. deep.We evaluated CNN archi-
tectures by incrementally increasing complexity, including kernel size, number of channels,
and depth. Two configurations emerged as optimal: CNN_L11_narrow (deeper and nar-
rower, detailed structure in S2 Table) and CNN_L3_wide (shallower and wider, detailed
structure in S4 Table). Both achieved comparable AUC-ROC scores but exhibited distinct
characteristics. CNN_L11_narrow showed higher prediction confidence, as demonstrated in
Fig 5.

RNNs and LSTMs. Recurrent models (RNNs and LSTMs) were tested to capture sequen-
tial dependencies, particularly for MSA-based embeddings. However, they failed to outper-
form CNNs. For instance, with ProtTrans, RNNs and LSTMs achieved an AUC-ROC of 0.92,
compared to 0.93 for CNN_L11_narrow. Their longer training times further limited their
scalability.

CBRCNN and two-stage CNNs.The CBRCNNmodel, which combines CNN and RNN
components, achieved slightly better results than standalone RNNs, reaching an AUC-ROC of
0.925 when using ProtTrans. The two-stage CNN (Fig 6), which enhances CNN_L11_narrow
by adding a second convolutional layer, did not lead to performance improvements. As shown
in S3 Fig, the second convolutional stage did not improve the AUC; instead, the performance
ultimately reached the same AUC as the first stage throughout the training process.

Best singles. From the eight embedding-architecture combinations tested, three “best
singles” were selected to capture diverse features for Phase 2 (Table 4):

• One-Hot + CNN_L11_narrow
• ProtTrans + CNN_L11_narrow
• MSA-Transformer + CNN_L11_narrow

Table 3. StrucBase: Performance of different embedding methods.
Embedding Embedding Dim #Parameters #Train-Epoch AUC-ROC
One-Hot 21 22 20 0.612
MSA-prob 22 23 400 0.835
MSA-probAA 22 23 300 0.833
MSA-prob-numTemp 23 24 300 0.846
MSA-probAA-
numTemp

23 24 500 0.846

ESM-2 1280 1281 200 0.903
MSA Transformer 768 769 300 0.921
ProtTrans 1024 1025 900 0.913
Note: The performance of each embedding method combined with the baseline model StrucBase is reported using
AUC-ROC scores.

https://doi.org/10.1371/journal.pone.0319208.t003
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Fig 5. Comparison of CNN_L3_wide and CNN_L11_narrow using ProtTrans embedding.The architectures have approximately 157K and 180K parameters,
respectively.

https://doi.org/10.1371/journal.pone.0319208.g005

These selections represent three key embedding categories: One-Hot (simplicity), PLM-
based (ProtTrans), and MSA-based (MSA-Transformer, which integrates PLM and MSA
information). By selecting these models, we ensured a balanced representation of diverse
embedding features in the next phase.
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Fig 6. Two-stage CNN structure. Stage 1 corresponds to the best-performing architecture (CNN_L11_narrow), while
Stage 2 adds a standalone CNN structure.

https://doi.org/10.1371/journal.pone.0319208.g006

Table 4. Optimal model solutions combining embeddings and network architectures.
Embedding Network #Layers #Feature #Param AUC-ROC
One-Hot CNN_L2 2 21 2,636 0.83
MSA-prob CNN_L11_narrow 11 22 46,641 0.896
MSA-probAA CNN3_L11_narrow 11 22 46,641 0.903
ProtTrans CNN2_L3_wide 3 1,024 105,011 0.9306

CNN2_L11_narrow 11 1,024 180,541 0.93
ESM-2 CNN2_L11_narrow 11 1,280 218,941 0.928
MSA Transformer CNN2_L11_narrow 11 768 142,141 0.934
Note: ProtTrans has two optimal architectures: CNN_L3_wide and CNN_L11_narrow, but only CNN_L11_narrow
was retained for Phase 2.

https://doi.org/10.1371/journal.pone.0319208.t004

Phase 2: Incremental improvements and ensemble formation
In Phase 2, the training process was expanded to include supplementary datasets (Dis-
Prot_FD, PDB_missing: clstr80, and PDB_missing: clstr100), and ensemble models were
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developed to combine the strengths of individual predictors. This phase focused on improving
performance and robustness by leveraging a variety of models.

Step 1: Incorporating fully disordered sequences. The training set was expanded by
adding the Fully Disordered Supplementary Set (DisProt_FD) to the PDB_missing: clstr30
dataset. The three selected best singles were retrained on this combined dataset, leading to
improved performance on the Primary Benchmarking Dataset (Disorder_PDB, CAID2). This
confirmed the added value of including fully disordered sequences, as seen in Table 5, where
predictors 4, 6, and 7, trained on the expanded dataset, outperformed predictors 1, 2, and 3,
respectively.

Step 2: Ensemble formation. To enhance the robustness of the model, k-fold cross-
validation was applied to each of the best single models:

• One-hot + CNN_L11_narrow: 3-fold cross-validation
• ProtTrans + CNN_L11_narrow: 5-fold cross-validation
• MSA-Transformer + CNN_L11_narrow: 5-fold cross-validation

This cross-validation process generated k single predictors per combination, capturing
slight variations in training data while ensuring full coverage of the training set. Two ensem-
ble predictors were formed based on this process:

• Predictor 11 (Table 5) combines 3 predictors from One-hot, 5 from ProtTrans, and 5 from
MSA-Transformer.

• Predictor 10 (Table 5) combines 3 predictors from One-hot and 5 from ProtTrans, exclud-
ing MSA-based embeddings.

Both ensembles were evaluated on Disorder_PDB using AUC-ROC as the primary metric.
Predictor 11 achieved an AUC-ROC of 0.947, while Predictor 10 achieved 0.943, demon-
strating that the absence of MSA-based embeddings had minimal impact on performance.

Table 5. Performance of predictors onDisorder_PDB.
Predictor Dataset Ensemble AUC-ROC APS MaxF1 threshold

One-Hot MSA
Transformer

ProtTrans

1 PDB_missing: clstr30 1 0 0 0.878 0.796 0.712 0.08
2 0 1 0 0.941 0.886 0.807 0.19
3 0 0 1 0.932 0.878 0.80 0.25
4 PDB_missing: clstr30 +Disprot_FD 1 0 0 0.878 0.798 0.714 0.09
5 3 0 0 0.889 0.814 0.735 0.1
6 0 1 0 0.947 0.921 0.855 0.28
7 0 0 1 0.940 0.870 0.832 0.41
8 0 0 5 0.940 0.890 0.833 0.33
9 0 5 5 0.944 0.880 0.840 0.3
10 3 0 5 0.943 0.900 0.834 0.28
11 3 5 5 0.947 0.910 0.844 0.33
12 PDB_missing: clstr80 +2*Disprot_FD 3 5 5 0.948 0.912 0.846 0.36
13 3 0 5 0.945 0.905 0.841 0.36
141 PDB_missing: clstr100 +3*Disprot_FD 3 5 5 0.952 0.915 0.849 0.378
152 3 0 5 0.95 0.911 0.845 0.35
The numbers under Ensemble represent the number of predictors from each embedding method used in the ensemble.
1 PUNCH2. 2PUNCH2-light.

https://doi.org/10.1371/journal.pone.0319208.t005
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Step 3: Scaling to larger datasets. The analysis was scaled to larger datasets, PDB_missing:
clstr80 + 2x DisProt_FD and PDB_missing: clstr100 + 3x DisProt_FD, and fine-tuned the
CNN_L11_narrow architecture accordingly. The results were as follows:

1. Increasing the depth of CNN_L11_narrow from 11 to 12 layers (CNN_L12_narrow,
S3 Table) yielded optimal performance across both larger datasets.

2. To maintain a similar emphasis on fully disordered sequences, DisProt_FD was repeated
twice for PDB_missing: clstr80 and three times for PDB_missing: clstr100.

3. The ensemble model, combining predictors trained on PDB_missing: clstr100 aug-
mented with three iterations of DisProt_FD, consistently demonstrated the best perfor-
mance (Table 5).

The two best ensembles from Step 2 were retrained on these expanded datasets. Increasing
dataset size further improved performance. Predictors trained on PDB_missing: clstr100 + 3x
DisProt_FD yielded the best results. We named these predictors:

• PUNCH2: (One-Hot + ProtTrans + MSA-Transformer) @ CNN_L12_narrow on
PDB_missing: clstr100 + 3 DisProt_FD.

• PUNCH2-light: (One-Hot + ProtTrans) @ CNN_L12_narrow on PDB_missing: clstr100
+ 3 DisProt_FD.

Benchmarking results. The final predictors, PUNCH2 and PUNCH2-light, were evalu-
ated on the CAID2, CAID3, and CAID1 benchmarking datasets. Evaluation metrics included
AUC-ROC, AUC-PR, MCC, F1, and APS, which provided a comprehensive assessment of
prediction accuracy, precision, and robustness.

Primary benchmarking (Disorder_PDB, CAID2). PUNCH2 and PUNCH2-light
demonstrated competitive performance on the Disorder_PDB dataset, achieving AUC-ROC
scores of 0.951 and 0.950, respectively. These results rival SPOT-Disorder2, the top predic-
tor in the CAID2 challenge, which achieved an APS of 0.928 (Table 6). Although SPOT-
Disorder2 slightly outperformed in APS, PUNCH2 and PUNCH2-light delivered higher
AUC-ROC and F1 scores, illustrating their robust performance across metrics.

Independent benchmarking (Disorder_PDB_3 from CAID3). On the Disorder_PDB_3
dataset, PUNCH2 achieved an AUC-ROC of 0.956, APS of 0.929, and F1 of 0.865, while
PUNCH2-light achieved an AUC-ROC of 0.950, APS of 0.925, and F1 of 0.862. Both
predictors outperformed SPOT-Disorder2 (AUC-ROC: 0.945, APS: 0.910, F1: 0.831) and
AlphaFold-rsa (AUC-ROC: 0.947, APS: 0.905, F1: 0.851) (Table 7, Fig 7 parts c&d). These
results highlight the robustness of PUNCH2 and PUNCH2-light in handling unseen
datasets.

Legacy benchmarking (Disorder_PDB_1, CAID1). On the older Disorder_PDB_1
dataset, PUNCH2 achieved an AUC-ROC of 0.939 and APS of 0.898, consistent with its per-
formance on CAID2 and CAID3 datasets (Supplementary S5 Table). This demonstrates the
stability of our predictors across diverse datasets.

Prediction result analysis. To evaluate the predictors’ performance and applicability,
we conducted statistical analysis and manual inspection of predictions on 71 fully anno-
tated sequences from the Disorder_PDB dataset, including 29 fully disordered and 42 par-
tially disordered sequences. The detailed statistical results are provided in the supplementary
information (S7 Table, S6 Table, S9 Table, S8 Table, and S2 Fig). Key observations include:

• Overall Metrics: Across all 71 sequences, the average accuracy, true positive rate (TPR), and
confidence score were 0.901, 0.73, and 0.795, respectively.
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Table 6. Performance comparison of PUNCH2, Top 10 CAID2 Predictors, and other well-known predictors on
Disorder_PDB.
Index Predictor AUC-ROC AUC-PR APS F1 Best_t MCC
1 SPOT-

Disorder2
0.949 0.929 0.928 0.860 0.361 0.795

2 AlphaFold-rsa 0.944 0.917 0.916 0.849 0.521 0.787
3 PredIDR-long 0.934 0.871 0.870 0.800 0.588 0.723
4 IDP-Fusion 0.933 0.878 0.878 0.822 0.488 0.756
5 SPOT-

Disorder
0.931 0.889 0.889 0.823 0.374 0.758

6 SETH-0 0.930 0.894 0.893 0.830 0.413 0.771
7 AlphaFold-

pLDDT
0.929 0.881 0.881 0.821 0.290 0.750

8 PredIDR-
short

0.927 0.859 0.859 0.790 0.601 0.707

9 metapredict 0.923 0.878 0.877 0.819 0.484 0.756
10 DeepIDP-2L 0.922 0.858 0.858 0.794 0.361 0.710
11 IUPred3 0.885 0.825 0.825 0.746 0.444 0.646
12 AIUPred 0.903 0.855 0.855 0.776 0.629 0.695
13 ESpritz-D 0.899 0.810 0.810 0.757 0.248 0.659
14 ESpritz-N 0.859 0.766 0.766 0.696 0.317 0.574
15 ESpritz-X 0.882 0.794 0.792 0.713 0.053 0.599
16 MobiDB-lite 0.868 0.801 0.763 0.729 0.375 0.630
17 PUNCH2 0.952 0.915 0.915 0.849 0.378 0.793
18 PUNCH2-

light
0.950 0.912 0.911 0.845 0.350 0.787

The numbers from 1 to 10 represent the performance rankings of various predictors in the CAID2 challenge. The last
two entries, PUNCH2 and PUNCH2-light, are our newly developed predictors.

https://doi.org/10.1371/journal.pone.0319208.t006

• Fully vs. Partially Disordered Sequences: For fully disordered sequences, the predictor
achieved a TPR of 0.868, accuracy of 0.868, and confidence score of 0.68. For partially dis-
ordered sequences, accuracy (0.923) and confidence (0.874) were higher, but TPR (0.635)
was lower, reflecting stronger overall predictions but a relative challenge in capturing true
positives for partial disorder.

• Bias and Strengths: The predictor excelled in identifying terminal IDRs (e.g., sequence
DP02757 in S2 Fig), while shorter internal IDRs were less accurately predicted, likely due
to dataset bias favoring terminal regions.

• High Accuracy Consistency: Over 90% accuracy was achieved for 55 of 71 sequences, with
38 achieving TPR above 90%.

In summary, the predictors perform robustly, especially for fully disordered proteins and
terminal IDRs, with high accuracy and confidence. However, predictions for internal IDRs
remain a challenge, potentially linked to dataset imbalances. Manual inspection aligned with
statistical analysis, reinforcing these conclusions.
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Table 7. Performance comparison of PUNCH2 and other well-known predictors onDisorder_PDB_3 (CAID3).
Index Predictor AUC-ROC AUC-PR APS F1 Best_t MCC
1 SPOT-

Disorder2
0.945 0.910 0.910 0.831 0.307 0.759

2 AlphaFold-rsa 0.947 0.905 0.905 0.851 0.558 0.790
3 PredIDR-long 0.926 0.854 0.853 0.762 0.528 0.655
4 IDP-Fusion 0.931 0.885 0.885 0.825 0.538 0.757
5 SPOT-

Disorder
0.925 0.876 0.875 0.798 0.379 0.717

6 SETH-0 0.933 0.905 0.905 0.843 0.394 0.778
7 AlphaFold-

pLDDT
0.938 0.903 0.902 0.841 0.296 0.773

8 PredIDR-
short

0.921 0.844 0.844 0.757 0.533 0.647

9 metapredict 0.931 0.899 0.899 0.829 0.534 0.765
10 DeepIDP-2L 0.919 0.863 0.863 0.797 0.376 0.708
11 IUPred3 0.890 0.836 0.836 0.757 0.452 0.654
12 AIUPred 0.904 0.866 0.866 0.783 0.662 0.698
13 ESpritz-D 0.878 0.788 0.787 0.726 0.268 0.600
14 ESpritz-N 0.872 0.803 0.803 0.727 0.341 0.609
15 ESpritz-X 0.873 0.804 0.802 0.726 0.054 0.603
16 MobiDB-lite 0.879 0.832 0.793 0.757 0.400 0.664
17 PUNCH2 0.956 0.930 0.929 0.865 0.384 0.806
18 PUNCH2-

Light
0.950 0.925 0.925 0.862 0.352 0.802

The numbers from 1 to 10 represent the performance rankings of various predictors in the CAID2 challenge. The last
two entries, PUNCH2 and PUNCH2-light, are our newly developed predictors.

https://doi.org/10.1371/journal.pone.0319208.t007

Conclusion
This study aimed to develop deep learning-based predictors for intrinsically disordered
regions (IDRs) and to provide a detailed roadmap for constructing such predictors. By sys-
tematically exploring datasets, embedding methods, and network architectures, we devel-
oped two robust predictors: PUNCH2 and PUNCH2-light. These predictors were trained
and evaluated on a combination of datasets, including experimentally derived sequences
from PDB and fully disordered proteins from DisProt, with benchmarking performed on the
CAID2, CAID3, and CAID1 datasets.

Our experiments highlighted the importance of incorporating fully disordered sequences
(DisProt_FD) into the training process, significantly enhancing performance. These sequences
contributed critical features absent in structured-region-focused datasets like PDB_missing,
allowing our predictors to achieve robust predictions for both fully and partially disordered
sequences. Datasets with 100% sequence identity (PDB_missing: clstr100) combined with
larger models outperformed lower-identity datasets, suggesting that IDRs’ inherent sequence
diversity enriches the training process while posing potential risks of dataset bias.

In the embedding evaluation, PLM-based methods, particularly ProtTrans, demonstrated
superior performance compared to One-Hot encoding and MSA-based embeddings. Notably,
ProtTrans offered stable and efficient predictions, slightly outperforming ESM-2. WhileMSA-
Transformer excelled in specific cases, its dependency on multiple sequence alignment (MSA)
and sequence length limitations made it less practical for high-throughput applications.
Combining embeddings (One-Hot, ProtTrans, and optionallyMSA-Transformer) proved
optimal for capturing IDR-specific features.
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Fig 7. Performance on CAID2 and CAID3. ROC and PR curves for the performance of the predictors on Disorder_PDB (a&b, from CAID2) and Disorder_PDB_3 (c&d,
from CAID3).

https://doi.org/10.1371/journal.pone.0319208.g007

From an architectural perspective, deeper convolutional neural networks (CNN_L12_narrow)
consistently achieved high AUC scores and generated more confident predictions than shal-
lower configurations, even with similar parameter counts. These architectures balanced cap-
turing both local and long-range sequence features, providing the foundation for our final
models.
PUNCH2 and PUNCH2-light embody the culmination of these efforts. Both predic-

tors demonstrated strong performance, surpassing or matching top CAID2 predictors in key
metrics such as AUC-ROC, APS, and F1. PUNCH2 combines One-Hot, ProtTrans, andMSA-
Transformer embeddings, while PUNCH2-light omitsMSA-Transformer for computational
efficiency with minimal accuracy loss. These predictors, trained solely on sequence-based fea-
tures, are straightforward and broadly applicable for IDR prediction tasks. Their simplicity
ensures accessibility for researchers seeking to predict IDRs or replicate and build upon our
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work. Both tools, PUNCH2 and PUNCH2-light, are publicly available on GitHub (https:
//github.com/deemeng/punch2 and https://github.com/deemeng/punch2_light, respec-
tively). Additionally, the datasets used in this project can be accessed on Hugging Face (https:
//huggingface.co/datasets/deeeeeeeeee/PUNCH2_data).

However, PUNCH2 and PUNCH2-light have limitations. The predictors were primarily
trained on datasets derived from X-ray crystallography, where missing residues are annotated
as IDRs. This introduces a bias toward shorter terminal IDRs and fully disordered proteins
while underrepresenting internal and longer IDRs. Our analysis confirmed that the predic-
tors perform well on termini and fully disordered sequences but are less accurate for inter-
nal IDRs. Additionally, as ensemble models, they provide robust and stable performance but
reduce interpretability compared to single predictors.

To address these limitations and further enhance the predictors, future work could
include:

• Incorporating NMR-derived mobile regions from PDB.
• Expanding training data with fully annotated DisProt datasets.
• Adding functional IDR-specific databases, such as disordered linkers and binding regions.
• Extending predictions to include functional annotations of IDRs.

In conclusion, PUNCH2 and PUNCH2-light offer practical and effective tools for IDR
prediction, combining state-of-the-art performance with computational efficiency. This
work also provides a detailed blueprint for developing IDR predictors, offering insights into
dataset design, embedding selection, and network architecture optimization. While limita-
tions remain, these predictors establish a strong foundation for future advancements in IDR
prediction and functional analysis.

Supporting information
S1 Table. PrepBase: probability model. PrepBase specifies the probability distribution for
each amino acid. The probabilities are calculated based on the residue composition from the
PDB_missing: clstr30 dataset. This distribution serves as a foundational reference for
the model, helping to encode the inherent likelihood of each amino acid’s occurrence.
(XLSX)

Model hyperparameters
Themodel structures for three main CNN architectures are detailed below, each with specific
configurations and hyperparameters.
S2 Table.Model structure of CNN_L11_narrow. CNN_L11_narrow consists of 11 layers
with a narrow configuration. The model employs a learning rate of 0.0001. The narrower
architecture is designed to focus on extracting detailed features through multiple convolu-
tional layers, allowing the model to capture subtle patterns in the data. #features stands for
the number of input features. For instance, if the embedding method used is One-Hot, the
#feature=21.
(XLSX)

S3 Table.Model structure of CNN_L12_narrow.This table outlines the structure
of CNN_L12_narrow, a variant with an additional convolutional layer compared to
CNN_L11_narrow. This model also uses a learning rate of 0.0001, aiming to further refine
feature extraction for a larger dataset through increased depth, potentially capturing more
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complex hierarchical features. #features stands for the number of input features. For instance,
if the embedding method used is One-Hot, the #feature=21.
(XLSX)

S4 Table. Model structure of CNN_L3_wide. CNN_L3_wide consists of 3 layers but with
a wider configuration, meaning each layer has more filters. The wider structure allows for a
broader capture of features at each level, facilitating the recognition of diverse patterns within
the input data. This model also operates with a learning rate of 0.0001. #features stands for the
number of input features. For instance, if the embedding method used is One-Hot, the #fea-
ture=21. These different configurations highlight the exploration of depth versus breadth in
CNN architectures, providing insights into the trade-offs between layer depth and layer width
in capturing features from protein sequences.
(XLSX)

Benchmarking
S5 Table. Performance comparison of PUNCH2 and other well-known predictors on
Disorder_PDB_1 (CAID1).The performance of PUNCH2 on the CAID1 dataset (Disor-
der_PDB_1) was compared against other well-known predictors. It summarizes these results,
highlighting the robustness of PUNCH2 in this historical benchmarking context.
(XLSX)

S1 Fig. ROC and PR curves for the performance of the predictors onDisorder_PDB_1
(a&b, from CAID1).
(TIF)

Prediction analysis on CAID2 The performance of PUNCH2 and PUNCH2-light was
further analyzed on the CAID2 dataset (Disorder_PDB). Specifically, we focused on 71 fully
annotated sequences, comprising 29 fully disordered proteins and 42 partially disordered
proteins.

S6 Table presents the performance of PUNCH2 on the 42 partially disordered protein
sequences, sorted by accuracy, while S7 Table provides a similar analysis for the 29 fully
disordered sequences. Correspondingly, S8 Table and S9 Table summarize the prediction
performance of PUNCH2-light on the same datasets. These tables highlight the consistent
performance of both predictors across different categories of sequences.

Additionally, S2 Fig illustrates specific examples of PUNCH2 predictions. For fully disor-
dered proteins such as DP03738 and DP02911, PUNCH2 achieved high prediction accuracy,
while it struggled with sequences like DP03489. Similarly, for partially disordered pro-
teins, PUNCH2 performed well on terminus-located IDRs, as seen in sequences DP03610
and DP03622, but showed lower accuracy for internal IDRs, such as those in DP03647.
This observation underscores the challenges in predicting internal IDRs and highlights the
strengths of PUNCH2 in handling terminus-located disordered regions.
S6 Table. Prediction performance of PUNCH2 for 42 partially disordered protein
sequences, sorted by accuracy.
(XLSX)

S7 Table. Prediction performance of PUNCH2 for 29 fully disordered protein sequences,
sorted by accuracy.
(XLSX)

S8 Table. Prediction performance of PUNCH2-light for 42 partially disordered protein
sequences, sorted by accuracy.
(XLSX)
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S9 Table. Prediction performance of PUNCH2-light for 29 fully disordered protein
sequences, sorted by accuracy.
(XLSX)

S2 Fig. PUNCH2 prediction examples. DP03738, DP02911, and DP03489 are fully dis-
ordered proteins. PUNCH2 performs very well on DP03738 and DP02911 but poorly on
DP03489. DP03647, DP03610, and DP03622 are partially disordered proteins. PUNCH2
performs very well on DP03610 and DP03622 but struggles with DP03647. The results also
demonstrate that PUNCH2 is particularly effective at predicting terminus-located IDRs,
whereas internal IDRs are more challenging.
(TIF)

S3 Fig. Training progress of CBRCNN. AUC_S1 denotes the AUC scores for Stage 1 and
AUC_S2 for Stage 2.
(TIF)
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